A glikolízis ( γλῠκὖς Glykys "édes" és λύσις Lysis "felszabadulás") vagy Embden-Meyerhof-Parnas a glükózfelvétel és az energiatermelés metabolikus útja . A sejt hialoplazmájában (vagy citoszoljában) játszódik le . Ahogy a neve is mutatja, glükózra van szüksége, és lehetővé teszi a piruvát előállítását . Ez utóbbi vagy beléphet a Krebs-ciklusba , amely az eukarióták mitokondriumában vagy a baktériumok citoplazmájában zajlik aerobiosisban, vagy anaerobiosisban fermentációval metabolizálódhat , például laktát vagy etanol előállítására .
A glikolízis olyan ATP regenerációs mechanizmus , amely nem igényel oxigént . E folyamat során tanúi vagyunk:
A P i szimbólum itt a szervetlen foszfát HPO 4 2-vagy hidrogén-foszfát.
Mivel a glikolízis a koenzimek redukcióját eredményezi, ezért szerves molekulák oxidációja kíséri . Elmondhatjuk, hogy az megfelel-e a oxidációját glükóz a piruvát :
glükóz + 2 NAD + → 2 CH 3 -CO-COO -+ 2 ( NADH + H + ),párosulva:
2 ADP + 2 P i + 2 H + → 2 ATP + 2 H 2 O,összesen
glükóz + 2 ADP + 2 P i + 2 NAD + → 2 piruvát * + 2 ATP + 2 ( NADH + H + ) + 2 H 2 O.D - glükóz | Piruvát | ||||
![]() |
+ 2 ADP + 2 P i + 2 NAD + |
![]() |
2 |
![]() |
+ 2 ATP + 2 (NADH + H + ) + 2 H 2 O |
A glikolízis döntő fontosságú a test számára, mivel ez a glükóz metabolizmusának fő útja. Ez az egyetlen metabolikus energiaforrás az agy számára , amely gyorsan összehúzza a vázizmokat vagy az eritrocitákat , kivéve a hosszan tartó éhgyomri vagy a hosszan tartó fizikai aktivitást. Valóban, amint a máj glikogénkészletei befejeződnek, a test lebontja lipidjeit, hogy szabad zsírsavakat és glicerint szabadítson fel a vérbe , amelyeket a béta-oxidáció keton testekké alakít át . Ezután ezek a keton testek táplálják az agyat és a test többi részét. A piruvát előállítása után a környezeti feltételektől függően több anyagcsere útvonalon haladhat.
A glikolízis 10 reakciójának sorozata három szakaszra bontható:
Ez a reakció igényel Mg 2+ kation , mint a kofaktor és fogyasztja egy ATP- molekula a foszforilálni egyes glükóz molekula . Segít a glükózkoncentráció viszonylag alacsony szinten tartásában a citoplazmában, hogy megkönnyítse a további glükózmolekulák bejutását. Ezenkívül a glükóz-6-foszfát már nem hagyhatja el a sejtet, mert a plazmamembrán nem rendelkezik transzporterrel ehhez a molekulához.
![]() |
+ ATP → ADP + H + + |
![]() |
Szőlőcukor | Glükóz-6-foszfát | |
Hexokináz - EC |
Ez a reakció visszafordíthatatlan. Ez katalizálja egy kináz , vagy egy hexokináz , a nem-specifikus glükóz , amely emlősök , leggyakrabban megtalálható izom , vagy glükokináz , specifikus glükóz . Ez a két enzim eltérő Michaelis állandót ( K M ) a megfelelő értékek 0,1 mM és 10 mM tudva, hogy a K M fordítottan arányos a affinitása az enzim annak szubsztrátok. Ez a két enzim Mg 2+ -függő. Emberben a glükokináz a májban és a hasnyálmirigy sejtjeiben lokalizálódik . Ez utóbbi valóban tökéletesen megfelel a máj tárolási funkciójának (főleg nagy glükóz beáramláskor, például étkezés után működik, és így hozzájárul a vércukorszint szabályozásához ). Ennek az enzimnek a működési zavara ezért felelős a cukorbetegség bizonyos típusaiért (a MODY cukorbetegség, amely az esetek 50% -ában a glükokináz mutációjának tudható be ).
A glükóz-foszforilezés nem specifikus a glikolízisre. Ez a lépés kiindulópontként szolgál a pentóz-foszfát útvonalán vagy a glikogenogenezishez is.
Megjegyzés: minden olyan reakció, amely nagy szabad entalpia variációval rendelkezik, visszafordíthatatlan, és mivel ez a foszforilezés energetikailag nagyon kedvelt, a reakció visszafordíthatatlan. Éppen ezért ezek az enzimek erősen szabályozottak, hogy megakadályozzák a rendszer versenyzését, mint a glikolízis másik két visszafordíthatatlan lépése. ( Foszfofruktokináz-1 , Piruvát-kináz ). A hexokinázt a saját terméke, a glükóz-6-foszfát gátolja ( negatív visszacsatolás ), gén expresszióját az inzulin indukálja . A glükokinázt a glükóz-6-foszfát nem gátolja, gén expresszióját azonban az inzulin indukálja.
Fruktóz-6-foszfát izomerizációA α- D -glükóz-6-foszfát- termelt glikolízis során izomerizáljuk β- D -fruktóz-6-foszfát által glükóz-6-foszfát-izomeráz (GPI) vagy phosphohexose izomeráz. Ez a reakció visszafordítható, és továbbra is jobbra orientálódik a Fru-6-P koncentrációja miatt, amelyet a következő glikolízis-lépés azonnali fogyasztása miatt meglehetősen alacsony szinten tart.
![]() |
![]() |
|
Glükóz-6-foszfát | Fruktóz-6-foszfát | |
Glükóz-6-foszfát-izomeráz - EC |
A β- D -fruktóz-6-foszfát (Fru-6-P) során termelt az előző reakció foszforilezett , hogy β- D -fruktóz-1,6-biszfoszfát (Fru-1,6-BP) által foszfofruktokináz -1 ( PFK-1) egy ATP molekulából , átalakítva ADP-vé . Ez az energiafogyasztás visszafordíthatatlanná teszi ezt a lépést, és a glikolízis sebességének fő szabályozási pontját képezi. Egy Mg 2+ kation viselkedik, mint egy kofaktor .
![]() |
+ ATP → ADP + H + + |
![]() |
Fruktóz-6-foszfát | Fruktóz-1,6-biszfoszfát | |
Foszfofruktokináz-1 - EC |
Vannak, főként eltérő szervezetekből állatok , különböző enzimek képes foszforilálni olyan a fruktóz-6-foszfát , szervetlen pirofoszfát az ATP helyett. Ez a difoszfát-fruktóz-6-foszfát-1-foszfotranszferáz (PFP) esete , amely számos növényben , bizonyos baktériumokban , archeákban és protisztokban található meg . Ritka archeákban van egy foszfofruktokináz-variáns, amely ezúttal ADP-t és nem ATP-t használ.
Ez a foszfofruktokináz (PFK) által katalizált reakció irreverzibilis és Mg2 + -függő. Ez az enzim katalizálja az első lépést, amely specifikus a glikolízisre. Erősen ellenőrzött módon alloszterikus ATP- mentes (az ATP- mentes a nem komplexált magnézium-ATP formája), amely a glikolízis "hasznos" végterméke. Plusz ATP-koncentráció mentes , annál lassabb ez a reakció, és fordítva, minél nagyobb az ATP- mentes koncentráció , annál alacsonyabb az enzim aktív. Ez egy önkontroll rendszer a glikolízishez. A glikolízis számos matematikai modelljét kidolgozták, amelyek azt mutatják, hogy ez a lépés a legfontosabb azok közül, amelyek szabályozzák a glikolízis áramlását.
Az ATP általi gátlást az AMP visszafordíthatja , ami lehetővé teszi az ATP / AMP arány állandó szinten tartását.
De főként a fruktóz-2,6-biszfoszfát szabályozza : valójában a fruktóz-2,6-biszfoszfát fruktóz-6-foszfátból történő termelésének egyetlen feladata a fruktóz-6-foszfát út telítettségének demonstrálása ( "túl tele"), mert a fruktóz-2,6-biszfoszfátnak nem kell metabolikussá válnia. By allostery , fruktóz-2,6-biszfoszfát tehát aktiválja a foszfofruktokináz-1 érdekében, hogy ösztönözze a fogyasztás a fruktóz-6-foszfátot, és így megakadályozzák a saját képződésének.
A β- D -fruktóz-1,6-biszfoszfát hasítjuk egy liáz , a fruktóz-bifoszfát-aldoláz , a D -gliceraldehid-3-foszfát- (G3P) és dihidroxi-aceton-foszfát (DHAP).
![]() |
![]() |
+ |
![]() |
|
Fruktóz-1,6-biszfoszfát | G3P | DHAP | ||
Fruktóz-biszfoszfát-aldoláz - EC |
Két osztálya van az aldoláz hasítani képes fruktóz-1,6-biszfoszfát: class I in állatok és növények , és az osztály II a gombák és a baktériumok ; az enzimek ezen két osztálya különböző mechanizmusokat alkalmaz a ketózis hasítására .
A dihidroxi-aceton-foszfát izomerizálása glicerinaldehid-3-foszfáttáA foszfát-dihidroxi-aceton van izomerizáljuk a D -gliceraldehid-3-foszfát- által triózfoszfát-izomeráz . Ezt a reakciót nem nagyon kedvelik, a „dihidroxi-acetonifoszfát → glicerinaldehid-3-foszfát” irányban 5% -ban, a másik irányban pedig 95% -ban megy végbe.
![]() |
![]() |
|
DHAP | G3P | |
Trióz-foszfát-izomeráz - EC |
Bár egyensúlyban a ketózis forma (DHAP) sokkal nagyobb mennyiségben fordul elő, mint az aldóz forma (G3P), a DHAP → G3P transzformáció gyors, mert a G3P vegyületet a következő glikolízis-reakciók véglegesen eliminálják.
Így a β- D- fruktóz-1,6-biszfoszfát minden egyes molekulája végül két D- gliceraldehid-3-foszfát (G3P) molekulát eredményez .
A D -gliceraldehid-3-foszfát- van foszforilált a 1,3-bisphospho- D -glycérate (1,3-BPG) által glicerinaldehid-3-foszfát-dehidrogenáz egyidejű redukálását egy molekula NAD + a NADH + H + ; ez az egyetlen lépés a glikolízisben, ahol redukálóerő képződik, NADH + H + formájában . Ezt a reakciót az elektromos töltés és a hidrogénatomok szempontjából kiegyensúlyozza az a tény, hogy a szervetlen foszfát (Pi) a citoplazmatikus közegben HPO 4 2- hidrogén- foszfátion formájában létezik..
![]() |
+ NAD + + Pi NADH + H + + |
![]() |
G3P | 1,3-BPG | |
Gliceraldehid-3-foszfát-dehidrogenáz - EC |
Ez a reverzibilis és oxidoreduktáz által katalizált redox-reakció nagy átviteli potenciállal rendelkező acil-tioészter-kötés kialakulásához vezet. Ez a lépés jelenti a glikolízis második részének kezdetét. A nagy átviteli potenciállal rendelkező kötések energiáját felhasználják az ATP szintéziséhez. A koenzimek redukálódnak (elektrongyarapodás).
Átalakítás 3-foszfogliceráttá ATP visszanyerésselAz 1,3-biszfoszfosz- D- glicerát (1,3-BPG) nagy transzferpotenciálú foszfátcsoportja lehetővé teszi az ADP- molekula ATP- be foszforilezését , hogy foszfoglicerát-kináz hatására 3-foszfo- D- glicerátot (3PG) képezzen. ; ez a glikolízis első lépése, ahol az energiát újrafelhasználható formában nyerik vissza, ATP-ben tárolják.
![]() |
+ ADP ATP + |
![]() |
1,3-BPG | 3PG | |
kináz - EC |
A 3-foszfo- D -glycérate van izomerizáljuk be 2-foszfo- D -glycérate (2PG) által foszfoglicerát mutáz .
![]() |
![]() |
|
3PG | 2PG | |
Foszfoglicerát-mutáz - EC |
A 2-foszfo- D- glicerátot (2PG) egy liáz , az enoláz (vagy foszfopiruvát-hidratáz) dehidrálja , így a foszfoenol-piruvátot (PEP) képezi . Egy Mg 2+ kation van szükség, mivel a katalizátor a dehidratálási reakció , míg egy második Mg 2+ Közbenjár egy „konformációs” szerepet együttműködve a karboxil -csoport a 2-foszfo- D -glycerate.
![]() |
H 2 O + |
![]() |
2PG | ELEVENSÉG | |
Enoláz ( foszfopiruvát- hidratáz) - EC |
A csoport -foszfát magas transzfer potenciál ( .DELTA.G ° ' = -61,9 kJ mol -1 ) a foszfo-enolpiruvát- lehetővé teszi foszforiláció egy molekula a ADP be ATP által piruvát kináz . Ehhez a reakcióhoz kofaktorként Mg 2+ kationra van szükség .
![]() |
+ ADP + H + → ATP + |
![]() |
ELEVENSÉG | Piruvát | |
Piruvát-kináz - EC |
E reakció során a foszfoenol-piruvát a piruvát-kináz által valójában irreverzibilisen átalakul enol-piruváttá, majd az enol-piruvát tautomerizmussal reverzibilien pirimátot eredményez .
Használt:
Termelni :
Tehát 2 mol ATP keletkezik 1 mol glükóz feldolgozásával .
A glikolízist főleg három kulcsenzim szintjén szabályozzák: PFK-1 , piruvát-kináz és hexokináz .
A PFK-1 vezérlés annyira allosztérikus :
A fruktóz-2,6-biszfoszfát koncentrációja ezért elengedhetetlen a glikolízishez. Foszfofruktokináz-2 szabályozza, amelynek aktivitása a foszforiláció állapotától függően eltérő:
A piruvát-kinázt alloszterikusan szabályozzák, és ez mindenütt jelen van:
A májban szintén kovalensen szabályozzák (a hormonok hatására )
Ennek az enzimnek a aktivitását a reakciótermék, a glükóz-6-foszfát gátolja . Ha felhalmozódik, termelése gyorsan csökken, hogy egyensúlyba kerüljön a fogyasztásával. Ez a folyamat megakadályozza a metabolitok felhalmozódását .
A glikolízis akkor szűnik meg, ha a redukált koenzimek nem oxidálódnak újra, különösen, ha a NADH nem regenerálódik NAD + formában . Például a glicerinaldehid-3-foszfát-dehidrogenáz által katalizált lépés nem mehet végbe NAD + nélkül :
![]() |
Oxidációs párosulva foszforilációja a gliceraldehid-3-foszfát (G3P) a 1,3-biszfoszfoglicerát (1,3-BPG) |
.
Ennek két fő metabolikus útja van, a táptalaj redox állapotától függően :
1) az anaerob környezetben , fermentációnak nevezzük , foszforilezéssel a szubsztrát szintjén és az elektronok szerves anyag általi elfogadásával. Számos fajtája létezik: tejsavas erjedés (ami az izmok nem oxigénjében fordul elő ) erjedés vajsav , alkoholos erjesztés . Tejerjesztés során a piruvátot közvetlenül a NADH redukálja laktáttá . Az élesztőgombák okozta alkoholos fermentáció során a glikolízist két további reakció meghosszabbítja: a piruvát dekarboxilezése acetaldehiddé, majd ez utóbbi etanollá redukálása . Ezért az első esetben a piruvát szolgál végső elektron-akceptorként, a második esetben pedig az acetaldehid.
![]() |
![]() |
|
A tejsavas fermentáció : a regeneráció NAD + biztosítja a közvetlen csökkentésére piruvát a laktát piruvát + 2 H + + 2 e - → laktát |
Alkoholos erjedés : a regeneráció NAD + biztosítja a csökkentés acetaldehid , hogy etanol acetaldehid + 2 H + + 2 e - → etanolt |
![]() |
→ glikolízis Krebs-ciklus → légzési lánc A protonok és elektronok végső akceptora a levegő oxigénje |
A glikolízis és a légzés (32 ATP) energiamérlege körülbelül 20-szor magasabb, mint a glikolízisé, amelyet fermentáció követ (2 ATP a tejsavas erjesztéshez).
A glükóz lebontásának egyéb útjai: